
Data Sheet
All contents are Copyright © 1992–2007 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 6 of 9
Cisco Part Number (Local
Controller Models)
Events/Sec
1
NetFlows/Se
c
Storage Rack Unit Power
Cisco Security MARS 110R
(CS-MARS-110R-K9)
4,500 75,000 1,500 GB
RAID 10 hot-
swappable
2 RU x 27
3/4" (D);
3.44" (H); 19"
(W) in.
2x 750 W
dual-
redundant,
120/240V
autoswitch
Cisco Security MARS 110
(CS-MARS-110-K9)
7,500 150,000 1,500 GB
RAID 10 hot-
swappable
2 RU x 27
3/4" (D);
3.44" (H); 19"
(W) in.
2x 750 W
dual-
redundant,
120/240V
autoswitch
Cisco Security MARS 210
(CS-MARS-210-K9)
15,000 300,000 2,000 TB
RAID 10 hot-
swappable
2 RU x 27
3/4" (D);
3.44" (H); 19"
(W) in.
2x 750 W
dual-
redundant,
120/240V
autoswitch
Cisco Part Number (Global Controller Models) Distributed Monitoring
Models
Supported
Maximum
Connections
Storage Rack Unit Power
Cisco Security MARS GCm
(CS-MARS-GCm-K9)
Cisco
Security
MARS
20/50 only
5 1 TB RAID 10
hot-
swappable
4 RU x 25.6"
(D); 19" (W)
in.
2x 500 W
dual-
redundant,
120/240V
autoswitch
Cisco Security MARS GC
(CS-MARS-GC-K9)
Any Not currently
restricted
1 TB RAID 10
hot-
swappable
4 RU x 25.6
in.
500W dual-
redundant,
120/240V
autoswitch
Cisco Security MARS GC2
(CS-MARS-GC2-K9)
Any Not currently
restricted
2 TB RAID 10
hot-
swappable
2 RU x 27
3/4" (D);
3.44" (H); 19"
(W) in.
2x 750 W
dual-
redundant,
120/240V
autoswitch
Dynamic Session-Based Correlation
Network Based Anomaly detection, including Cisco NetFlow
Behavior-based and rules-based event correlation
Comprehensive built-in and user-defined rules
Automated NAT normalization
Topology Discovery
Layer 3 and Layer 2 routers, switches, and firewalls
Network IDS blades and appliances
Manual and scheduled discovery
Secure Shell (SSH), SNMP, Telnet, and device-specific communications
Vulnerability Analysis
Incident-triggered targeted network-based and host-based fingerprinting
Switch, router, firewall, and NAT configuration analysis
Automated vulnerability scanner data capture
Automated and user-tuned false positive analysis
Komentarze do niniejszej Instrukcji